Probabilistic Reasoning for Entity & Relation Recognition
نویسندگان
چکیده
This paper develops a method for recognizing relations and entities in sentences, while taking mutual dependencies among them into account. E.g., the kill (Johns, Oswald) relation in: “J. V. Oswald was murdered at JFK after his assassin, K. F. Johns...” depends on identifying Oswald and Johns as people, JFK being identified as a location, and the kill relation between Oswald and Johns; this, in turn, enforces that Oswald and Johns are people. In our framework, classifiers that identify entities and relations among them are first learned from local information in the sentence; this information, along with constraints induced among entity types and relations, is used to perform global inference that accounts for the mutual dependencies among the entities. Our preliminary experimental results are promising and show that our global inference approach improves over learning relations and entities separately.
منابع مشابه
Markov Logic Networks for Optical Chemical Structure Recognition
Optical chemical structure recognition is the problem of converting a bitmap image containing a chemical structure formula into a standard structured representation of the molecule. We introduce a novel approach to this problem based on the pipelined integration of pattern recognition techniques with probabilistic knowledge representation and reasoning. Basic entities and relations (such as tex...
متن کاملبهبود شناسایی موجودیتهای نامدار فارسی با استفاده از کسره اضافه
Named entity recognition is a process in which the people’s names, name of places (cities, countries, seas, etc.) and organizations (public and private companies, international institutions, etc.), date, currency and percentages in a text are identified. Named entity recognition plays an important role in many NLP tasks such as semantic role labeling, question answering, summarization, machine ...
متن کاملProbabilistic Reasoning For Entity And Relation Recognition
This paper develops a method for recognizing relations and entities in sentences, while taking mutual dependencies among them into account. E.g., the kill (Johns, Oswald) relation in: “J. V. Oswald was murdered at JFK after his assassin, K. F. Johns...” depends on identifying Oswald and Johns as people, JFK being identified as a location, and the kill relation between Oswald and Johns; this, in...
متن کاملProbabilistic Abduction using Markov Logic Networks
Abduction is inference to the best explanation of a given set of evidence. It is important for plan or intent recognition systems. Traditional approaches to abductive reasoning have either used first-order logic, which is unable to reason under uncertainty, or Bayesian networks, which can handle uncertainty using probabilities but cannot directly handle an unbounded number of related entities. ...
متن کاملProbabilistic Region Connection Calculus
We present a novel probabilistic model and specification language for spatial relations. Qualitative spatial logics such as RCC are used for representation and reasoning about physical entities. Our probabilistic RCC semantics enables a more expressive representation of spatial relations. We observe that reasoning in this new framework can be hard. We address this difficulty by using a factored...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002